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A Study of the Numerical Dispersion Relation
for the 2-D ADI-FDTD Method

Saehoon Ju, Sudent Member, |EEE, Hyeongdong Kim, Member, IEEE, and Hyung-Hoon Kim

Abstract—T his letter presents a numerical dispersion relation
for the two-dimensional (2-D) finite-difference time-domain
method based on the alternating-direction implicit time-marching
scheme (2-D ADI-FDTD). The proposed analytical relation for
2-D ADI-FDTD is compared with those relations in the previous
works. Through numerical tests, the dispersion equation of this
work was shown as correct one for 2-D ADI-FDTD.

I ndex Terms—Dispersion relation, finite-differencetime-domain
(FDTD), two-dimensional (2-D) ADI-FDTD.

I. INTRODUCTION

ECENTLY, to eliminate the Courant-Friedrich-Levy

(CFL) stability constraint, the alternating-direction
implicit (ADI) algorithm has been introduced to the fi-
nite-difference time-domain (FDTD) method and leads to
the unconditionally stable ADI-FDTD method [1], [2]. Many
researches[1]-{6] pointed out that this method has the potential
to considerably reduce the number of time iterations especially
in case where the fine spatial lattice relative to the wavelength
is used to resolve fine geometrical features. This is mainly
due to its numerical dispersion property that rapidly degrades
as the simulation time step size increases. That is, in the
ADI-FDTD, time step size can be determined upon not the
CFL stability condition but numerical accuracy of the method
such as humerical dispersion.

There are some controversies regarding the numerical disper-
sion relation of the two-dimensional (2-D) ADI-FDTD [1], [7]
unlikethe 3-D ADI-FDTD [8]. In[1], Namiki and Ito proposed
an analytical dispersion relation for the 2-D ADI-FDTD and,
through simulations for TE and TM wave, presented numerical
phase vel ocities versus varioustime step size for the comparison
with that of the traditional FDTD. However, they did not show
if their closed-form relation accords with numerical results. Re-
cently, Zhao pointed out some errors of [1] and proposed an-
other closed-form dispersion relations for the 2-D ADI-FDTD
[7]. Also, the author, according to the updating procedure, cat-
egorizes the traditional 2-D ADI-FDTD into two sub-methods
and derived dispersion equations for each sub-method. Some
guidelines for choosing the maximum time step size of the 2-D
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ADI-FDTD can be found in [7], but numerical tests to support
his dispersion relations were not carried out.

In this paper, we present anew dispersion relation for the 2-D
ADI-FDTD using asimilar procedure described in[8] and show
that the proposed relation and numerical results are in good
agreement. The unconditional stability and the relation between
thiswork and our previous results for the dispersion equation of
the 3-D ADI-FDTD method [9] are al so discussed.

II. NUMERICAL DISPERSION RELATION OF 2-D ADI-FDTD

There are two options according to the update process in the
2-D ADI-FDTD method.

A. Option |

First, let us consider the differential form of 2-D Maxwell’s
equationsfor TM casein linear, isotropic, lossess, and nondis-
persive media. Following the procedure in [1] (this approach
was named z-directional 2-D ADI-FDTD in[7]), the ADI time-
marching al gorithm approximatesthe 2-D differential equations
in time domain as
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where ¢, 11 are the permittivity and the permeability, respec-
tively. The superscript in (1) and (2) denotes a mapping point of
the discrete time space, i.e., n meanst¢ = nAt. After applying
the central difference approximation to (1) and (2), we can get
the difference update equations. The update procedureis asfol-
lows: 1) in the first iteration EZT?) can pe updated implic-
itly along they-directionand H2+ /2 g1+ /2 geevaluated
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Fig. 1. Line current source model radiating in free-space for 2-D TM case.
There are 18 observation points separated from the source points. The value in
parenthesisis alocation of the observation points. The problem sizeis 20 A x
20 Aq.

explicitly; 2) in the second iteration E**! can be updated im-
plicitly along the z-direction and H}*!, H)** are evaluated
explicitly. The update procedure of [1] can be applied to the TE
case also: 1) in the first iteration /2 can be updated im-
plicitly along the z-directionand E2 /2| H77/%) grecalcu-
lated explicitly; 2) in the second iteration E7+1 can be updated
implicitly along the y-directionand £+, H?'** are calcul ated
explicitly.

B. Option Il

Option 11 follows the update procedure described in [2] (this
approach was named y-directional 2-D ADI-FDTD in[7]). This
update procedure is very similar to that of option | except that
the order of the direction for implicit calculations is reversed.
Therefore, we can understand that two update procedures are
staggered by half time step in the time domain. For the TM
case, the update process of option Il isasfollows: 1) in thefirst
iteration E" Y/ can be updated implicitly along the z-direc-
tionand Hy ™2 Hy T/ are evaluated explicitly; 2) in the
second iteration E7*1 can be updated implicitly along the y-di-
rection and Ht!, H)+! are evaluated explicitly. For the TE
case, 1) inthefirst iteration EZY/D canbe updated implicitly
adongthey-directionand E3 /2 g7/ arecalcul ated ex-
plicitly; 2) in the second iteration £+ can be updated implic-
itly along the z-direction and EZY Y2 g+ /2) ge calcu-
lated explicitly.

To derive the closed-form dispersion relation for the 2-D
ADI-FDTD method, the spectral domain relationship between
field components at » and n + 1 time step can be obtained by
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Fig. 2. Normalized numerical phase velocity of the 2-D ADI-FDTD method
versus wave-propagation angle. Simulation resultsfor two update processes and
a proposed dispersion relation are in good agreement.

a similar procedure described in [2] and expressed in a matrix
form as

X = AX" ()

where the composite vector X consists of three field
components in the spectral domain, i.e, for the TM
case, X"*' = [Ert' Hpt' HpP'T and X7 =
[Er Hp H7|". Due to the limit of space, we show the
meatrix for only the above TM cases at the top of the next
page. In the matrix A, W,, = (At/Az) - sin(k,Axz/2) and
W, = (At/Ay) - sin(k,Ay/2), where k, and k,, are spectral
variables corresponding to the spatial variable z and y. We
found that the A matrices corresponding to the above four cases
(option I-TM, -TE and option II-TM, -TE) are different, but
their eigenvalues are identical. The eigenvalues are 1 and one
conjugate pair whose absolute values are equal to 1. This means
that the 2-D ADI-FDTD method is unconditionally stable,
which has been aso demonstrated through numerical tests.
Now, we assume a monocromatic wave with the angular fre-
quency w, i.e, X™ = Xe/“"At Then (3) can be expressed as

(F“MI—A) X =0 (4

where I is a3 x 3 identity matrix. By setting the determinant
of the matrix (¢/“2*1 — A) to be zero [8], we can derive the
numerical dispersion relation for 2-D wave propagation in the
ADI-FDTD method. Theresulting analytical dispersion relation
for the 2-D ADI-FDTD method is

.o [ WAL W3W§ + pueWl + uEWyQ
N2 T WIWE peWE e W e
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It was found that the above four update processes (option
[-TM, -TE and option II-TM, -TE) result in the same 2-D dis-
persion equation. This result disagrees with that of [7] in that
there aretwo different dispersion equationsfor optionl and 11 in
[7]. Also it should be noted that the closed form 2-D dispersion
relation of (5) can be obtained straightforwardly from previous
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work [(3) for the 3-D dispersion relation in [9]] by assuming no
change of electromagnetic properties along the >-direction, that
is, by letting W, = 0.

I11. NUMERICAL VERIFICATION AND DISCUSSION

To verify the numerical dispersion relation (5), we simulated
a line current source radiating in free-space for two 2-D TM
cases (option | and I1) as shown in Fig. 1. There are 18 obser-
vation points separated from the source. We can get the normal-
ized numerical phase velocity as described in [6]. The propaga
tion angles of the plane wave goes through A-A’, B-B’, C-C’
are 0°, 45°, 90°, respectively. In the simulation, to meet the
purpose of the ADI-FDTD and clearly compare the results of
numerical phase velocity, a fine square grid is used for all the
caseswith A = Az = Ay = A\o/50. Therefore, the grid sam-
pling density used for getting phase velocity curvesis50. Inthe
2-D ADI-FDTD, the time step size At more than the CFL sta
bility limit At-p of the traditional FDTD is employed, i.e.,
CFLN = At/Atcpr, = 2,4,6,8.

Fig. 2 shows normalized phase velocities of various disper-
sion eguations and simulation results of option I-TM and op-
tion 11-TM case. A numerical phase velocity for the traditional
FDTD with CFLN = 1isalso presented. Along one of the main
axes (xz and %), the phase velocity curves of [7] and proposed
(5) are overlapped. This comes from the fact that the disper-
sion relation of [7] is the same as that of our work along only
one of main axes. However, while a phase velocity exceeding
¢ can be observed in [7] when the wave-propagation angle is
0° or 90°, the phase velocity of both the FDTD dispersion re-
|ation and the proposed 2-D ADI-FDTD dispersion relation (5)
is always slower than light over the observation angles and has
its maximum value at 45°. We can see that the phase velocity
of the proposed dispersion (5) gets worse as time step size in-

creases. When time step size is smaller than the CFL stability
limit, closed-form dispersion relations show similar character-
istics but datafor this situation isnot given. Through the numer-
ical tests with various CFLN, it is demonstrated that the simu-
lation results for two TM options marked at discrete angles and
the phase velocity from the proposed relation are well matched.
The numerical tests show that (5) isan analytical dispersion re-
lation for the 2-D ADI-FDTD method.
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